The anterior approach, supported by years of clinical experience\[16\], is the only technique that follows an intermuscular and internerve path, potentially reducing the risk of damage to perarticular structures such as muscles, tendons, vessels and nerves. Convinced of the value of the anterior approach for improving patient wellbeing, but at the same time acknowledging the potential challenges in its adoption, an international group of expert surgeons, in collaboration with Medacta, set out to optimize and standardize the anterior approach, to make it more straightforward and enhance its reproducibility.

The result of this collaboration was the AMIS (Anterior Minimally Invasive Surgery) technique, created in 2004, along with the development of dedicated instrumentation to facilitate the procedure. Today, the AMIS technique has evolved into the AMIS Experience and is now more than just a surgical technique. The AMIS Experience is a complete set of services that delivers healthcare efficiencies, including economic and commercial advantages, to the hospital and surgeon. AMISTem-P will enter you into Medacta International’s world of the AMIS Experience.

REFERENCES

[17] Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty Annual Report 2017, AOA, Adelaide. Table HT17 and Figure HT7

All trademarks and registered trademarks are the property of their respective owners.

This document is intended for the US market.
AMIStem-P is made of Titanium Niobium Alloy (ISO 5832-11) and sandblasted along its length, producing a surface with 2.5 to 6µm roughness. Successively a layer of MectaGrip, 300µm of pure Titanium deposited through Plasma Spray technology, is applied on the proximal 50% of the stem. Finally, 80µm of Hydroxyapatite (HA) is applied to the entire length of the stem.

Professor William Walsh’s animal study [4] demonstrates how a surface treated with MectaGrip coating can achieve a stronger bone implant interface compared to a surface treated with Hydroxyapatite alone.

AMIStem-P: HERITAGE MEETS PROGRESS
AMIStem-P is the evolution of a successful and proven femoral stem concept, originally born to simplify the AMIS approach without compromising implant stability.

On the basis of the remarkable clinical heritage of AMIStem-H[1,2,3], AMIStem-P was developed with the goal of providing an improved load transfer through the application of a state-of-the-art coating (MectaGrip) on the proximal part of the stem.

AMIStem-P maintains the same geometry as the AMIStem-H. Its triple tapered design characterized by a reduced lateral flare and an optimized length, which allows for an easier stem implantation and reduced bone removal.

AMIStem-H’s solid clinical history[1,2,3] laid the groundwork for the development of AMIStem-P. On the basis of the remarkable clinical heritage of AMIStem-H[1,2,3], AMIStem-P was developed with the goal of providing an improved load transfer through the application of a state-of-the-art coating (MectaGrip) on the proximal part of the stem.

SUCCESSFUL CLINICAL HERITAGE
AMIStem-P’s Excellent CLINICAL PROGRAM
AMIStem-P maintains the same geometry as the AMIStem-H. Its triple tapered design characterized by a reduced lateral flare and an optimized length, which allows for an easier stem implantation and reduced bone removal.

PERFORMANCE COATING
MectaGrip coating aims to provide an enhanced proximal fill at the metaphyseal level, and a mechanically stronger bone implant interface. This results in potentially improved load transfer[2,3]. The whole endosteal part of the stem is Hydroxyapatite coated[3,4,5].

METEGRIP
Professor William Walsh’s animal study[4] demonstrates how a surface treated with MectaGrip coating can achieve a stronger bone implant interface compared to a surface treated with Hydroxyapatite alone.

EXEMPLARY CLINICAL RESULTS
98.4%[3] Survival rate for aseptic loosening at 8 years

MEETING TODAY’S CHALLENGES
Young and active patients are the toughest challenge in THA today. The revision rate for patients younger than 55 years is significantly higher across pathologies[6]. Mechanically stronger bone implant interface will help meet these challenges allowing higher loads to be transferred.

EXTENSIVE PRODUCT RANGE
Literature tells us that femoral offset should increase progressively with stem size[7,8]. AMIStem’s comprehensive product range and anatomically progressing head centers help an efficient restoration of the joint biomechanics in an increasing patient population.

PRODUCT RANGE
Neck length increases size by size to allow for anatomical head center growth[9,10]. Vertical offset does not change when adding lateral offset for each size implant, thus leg length is not affected when changing from standard to lateralized.

AMIStem-P
11 Standard sizes (from 0 to 9) with a 135° CCD angle
9 Lateralized sizes (from 0 to 8) with a 127° CCD angle

AMIStem-P Collared
11 Standard sizes (from 0 to 9) with a 135° CCD angle
9 Lateralized sizes (from 0 to 8) with a 127° CCD angle

AMIStem-C
9 Standard sizes (from 0 to 8) with a 135° neck-shaft angle
9 Lateralized sizes (from 0 to 8) with a 127° neck-shaft angle

Shear Stress (MPa)